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 For I dipp’d into the future, far as human eye could see,
Saw the vision of the world, and all the wonder that would be.
(Locksley Hall, 1842)

 Abstract

 This paper was written to inform the development of material for a Commonwealth
monograph on numeracy and to address the topic indicated in the title. While the
focus of the discussion is on information and communication aspects of technology,
implications for life outcomes for personal contexts have also been included. The
readings undertaken to ensure the topic was addressed appropriately led to many
formulations of the title and conclusions including:

• the nature of the technological society

• the interface between technology and education

• the nature of demands of working numerately and need for flexibility

• the demand from society for stronger inclusion in the education process

• the need for mathematics education to improve students’ sense of contexts of
application of mathematical learning

• the need for mathematics education to embrace the new approaches to
assessment.

 Introduction

 Plato is credited with, or held responsible for, advocating the superiority of
knowledge retained in written form over the oral traditions of previous time.
Knowledge preserved in oral forms must meet linguistic conditions to enable
memorisation, and may be:

 stated in language that is regularly patterned, that is visually rich and imagic,
that personifies impersonal phenomena… (Scribner, 1968, p. 175).

 On the other hand, the use of written language enabled storage and retrieval of
knowledge of a different form, allowing classificatory and philosophical expositions
that do not necessarily lead to easy memorisation and which allow enquiry of
knowledge to proceed in different ways. Of course, the nature of language itself had
to change to allow this development of written literacy as the forum of education,
with the development of ‘syntax and lexicon suitable for the expression of conceptual
thought’ (Scribner, 1968, p. 175).
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 In the two and a half thousand years since Plato’s time, in Western society in
particular, we have progressively fostered the perception that knowledge is stored
in, and is to be stored in, written paper and expository text format. The capacity to
print volumes of texts relatively cheaply, and to write and to read such texts, have
been seen as critical to our knowledge-driven society. Preservation of these
perceptions has been an outcome of current education and bureaucratic systems
which themselves have focused on knowledge storage and transmission in similar
ways. Hence, while in law we may have brilliant barristers who declaim and win a
case by their persuasive oral powers and logic, we have written transcripts of these
cases and written judgements which become the source of study and reference in the
continuation of legal practice, and assessment on these the gate-keeping to a career in
this area.

 Around this written world has existed an oral world of work practices and of
community practices, a world that has been patronised as lesser — in demand,
sophistication, even purpose — than the written world. However, in a very short
period of time relative to the time since Plato directed our conceptions of knowledge
and education, the world has changed dramatically. Computer technology and
communication technology have brought about this change. While a primary role of
computers in business may originally have been the storage of written text in
cyberspace rather than paper, emulating the written world of the past, programs
such as spreadsheets, specific purpose stock registers and also communication
technology have led to changes in these purposes. The world of work in Western
society, and increasingly throughout all of the world, has become a visual/oral
world where reading requires recognition of individual words on menus and active
selection of screen options. These screens allow information to be displayed, usually
in tabular form with information in vertical columns, or for information to be input
using similar forms. Professional communication in many settings now involves oral
conversation about such tabular information. The new business triad for the
clinching of a deal consists of two human interlocutors and a cybernetic
intermediary. In recent times we have even seen startling consequences for the share
market through deals made between cybernetic interlocutors without the
intervention of a human intermediary.

 This visual and oral world is the personal and work world for which education is
preparing students. Cumming, Wyatt-Smith, Ryan and Doig (1998) have shown that
the classroom environment for student learning partially replicates this world, with
an emphasis on multimodal ways of communicating, that is, oral and visual
interaction. However, education itself and the bureaucracies that surround education
are in danger of becoming anachronisms, preciously preserving their world of paper
and perceptions of knowledge as written expository or narrative text. This paper
itself is part of such a world. However this paper has been prepared on a computer
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screen surrounded by icons and list menus to facilitate its preparation, with time and
battery symbols to be interpreted to manage my work, judgements to be made on the
spot about font size, spacing between lines, margins, tabs and so on. The paper will
be transmitted electronically where it can be read on screen or printed, or selected
pages can be printed or scanned electronically for key words or phrases. Large
chunks can be extracted and ‘pasted’ into another document enabling electronic
writing to occur rather than new creativity.

 More to the point, the information and argument to be developed in this paper could
just as easily be presented in a table form or dot points, a more succinct form for the
reader. However, the specifications require at least 5,000 words (already nearly 2,000
words using the Word Count menu option) and the implicit expectation is that the
traditional expository argument will be used. Perhaps the resultant policy document
will have more iconic form.

 Just as the worlds of work and personal lives have changed over recent decades, so
too has our understanding of the nature of learning and the role of teaching in
facilitating learning. The need for education to develop flexible learners who will
continue to generate meaning and understanding from what they have already
learnt, while seeking to continue to learn, is seen as critical to a modern technological
society. Currently-held learning theories emphasise socio-cultural and situated
effects on learning (Brown, Collins & Duguid, 1989; CTGV, 1992; Vygotsky, 1978).
The world of school learning cannot be divorced from the other worlds.

 At this point, mathematics educators may be asserting that mathematics is a
symbolic language and that mathematics education focuses heavily on the visual and
iconic forms, consistent with the modern society just depicted. However, in this
paper it is stated that ironically, mathematics education, referred to by Landman
(1997) as one of the new technologies, may be the most preciously protected area.
Many teachers and others are reluctant to move from the textbook and written
responses, and paper and pencil assessment of ‘learning’. Debate continues about
whether technological aids such as graphics and programmable calculators should
be used in teaching or assessment. They are still not allowed to be used in many
university examinations, for fear that if students are not calculating (with ordinary
calculator assistance) solutions to equations themselves, they are not demonstrating
understanding. Some view appropriate use of a programmable calculator somehow
as cheating. Or are there other underlying reasons why practice is reluctant to
change?

 In this paper it is argued that, as we look at our changing technological society, and
the demands and links that need to be made between numeracy performance and life
outcomes in employment, education, training and personal contexts, the future of
numeracy education for schools is to address the issues of education for the visual
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and oral world that we occupy. In literacy, Freire (Freire & Macedo, 1987) advocated
world literacy programs for empowerment and political reasons, to allow people to
not only ‘read the word’ but also to ‘read the world’. It is timely for numeracy
education to go beyond the written word to the visual. Through all of our
educational activities we must assist students to ‘envisage the world’. This position
will be explored through elaboration on a range of related topics and frameworks.

 Relationships between mathematics and numeracy

 While the following discussion does not explore in depth past and current
conceptualisations of mathematics education and numeracy, as these will be
addressed in other papers, sufficient discussion of this relationship is needed to
provide a definitional or conceptual framework for this paper.

 The first premise on which this paper is based relates to the basic definitions of the
nature of mathematics. Mathematics is defined as:

 The logical study of shape, arrangement, quantity, and many related concepts.
(James & James, Mathematics Dictionary (5th edition), 1992)

 or, in educational terms, as:

 A body of ideas structured by logical reasoning.
(Encyclopedia of Educational Research, 5th edition, 1982)

 The importance of these basic definitions is their emphasis on relationships and
representation. While the role of logic is also stressed, later discussion will show
there is a need to question ‘whose logic’.

 An important understanding of the nature of mathematics is that it is about
modelling, about providing explanations for the world in which we live (Landman,
1997). Hence at an elemental level mathematics is about providing a visual and
symbolic representation of the world and its own spatial environment and the
relationships between elements. While the direction of mathematics has been to
develop abstracted representations, the origins of these should not be forgotten.
Western mathematics is derived from various sources, including the long-established
Chinese mathematics. Leung (1998) provides an overview of the traditional Chinese
view of mathematics with the suggestion that this view needs to be revisited in
current times. He cites Wang who summarised five major characteristics of ancient
Chinese mathematics of which the first was Pragmatics.

 …use of mathematical models to solve everyday life problems, marks the two
most important characteristics of traditional Chinese mathematics: its algorithmic
nature and its emphasis on application, (Leung, 1998, p. 71).
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 Leung contrasts the Greek philosophical system of mathematics, seen as an elitist
system, with the Chinese emphasis on pragmatics and problem-solving, perhaps
more suitable for the whole population.

 It is timely to reconsider these core conceptualisations of mathematics if we examine
notions of numeracy and also the needs of learners. Firstly, definitions of numeracy
generally differ from traditional considerations of mathematics education in the area
of application and practicality. Definitions go beyond knowledge of mathematics to
include ability to choose the mathematics to use — perhaps not in the ways defined
by school curriculum as standard — to make appropriate use of this mathematics, to
obtain reasonable solutions and to check on this reasonableness, to determine
appropriate degrees of accuracy, and to be critically aware of how mathematical
information and arguments can be used to manipulate, empower or disempower
individuals. The early numeracy definitions of Crowther (1959) and Cockcroft (1982)
emphasised these components in the contexts of everyday lives. Critical awareness
has become more valued as a result of similar work in literacy (see, for example,
Freebody and Luke (1990), and parallel numeracy discussions in Johnston (1994)).

 Work in literacy research has defined the difference between the type of reading
activity that is undertaken in schooling and the reading activities that are used at
work. In literacy, this has been defined most simply as the ‘reading to learn’ and
‘reading to do’. Literacy work in this area by researchers such as Diehl, Mikulecky,
Sticht, Kirsch, Guthrie, and Moe has been summarised in Freebody, Cumming &
Falk (1993) as:

• workplace literacy differs from school literacy in that workplaces call for a
variety of materials while schools do not;

• workplace writing is targeted toward a specific audience with specific
intent such as to convey information or to persuade;

• workplace literacy is a social phenomenon which includes asking questions
and gathering information from other workers (hence often orally based);

• workers tend to read job material with higher levels of proficiency than
they do general material (through availability and use of cues that help
activate appropriate schemata);

• workplace literacy is multi-modal in nature (rarely are reading, writing and
speaking found in isolation);

• job performance is more closely related to metacognitive aspects of literacy
than to the basic literacy abilities of achieving simple comprehension or
communicating simple measures;

• two primary and distinctive types of reading exist, ‘reading to do’, the
majority of work reading, and ‘reading to learn’, reading to learn
information to be remembered for later use (Freebody et al., 1993, p. 55).



 © Commonwealth of Australia 2000 8

 Parallels obviously exist for numeracy. In looking at the needs for numeracy
education it is important to be considering issues in the learning of mathematics as a
discipline, the numeracy needs for learning other discipline areas, the numeracy
needs for the workplace and also for personal lives.

 Elsewhere, (Cumming, 1996) I have argued that it is important to have separate
notions of numeracy education and mathematics education, mostly in order to
enable new thinking on the directions education in either should take. However, it
has always been clear that the most encompassing definitions of good mathematics
education practice, such as in the 1995 statement of the National Council of Teachers
in Mathematics (NCTM) of the United States of America, incorporate problem-
solving, real life applications, cultural and critical awareness.

 A shift in the vision of learning mathematics towards investigating, formulating,
representing, reasoning, and applying a variety of strategies to the solution of
problems — then reflecting on these uses of mathematics — and away from
being shown or told, memorizing, and repeating. This represents a shift from
mechanical to cognitive work and also assumes the acquisition of a healthy
disposition toward mathematics. Furthermore, cognitive work for all students is
culturally dependent because students bring to each lesson their past experiences
and the diverse facets of their cultural identities. Thus, instruction that
capitalizes, and builds, on what students bring to a problem situation can
motivate them to struggle with, and make sense of, the problem and share their
thinking with classmates (NCTM, 1995, p. 2).

 Resnick (1988) explored the notion of mathematics as an ill-structured discipline,
rather than the concise discipline as it is sometimes viewed. She noted

 mathematics is useful. It helps us describe and manipulate real objects and real
events in the real world…

 We encounter an explosion of interpretations when we include as potential
referents for mathematical statements the actual things in the world to which
abstract mathematical entities can be reliably mapped — what we might term
‘situations that we can mathematize’ (Resnick, 1988, p. 33–34).

 Resnick believes that teaching that emphasises explanations and justifications

 would aim to develop both capability and disposition for finding relationships
among mathematical entities and between mathematical statements and
situations involving quantities, relationships, and patterns (Resnick, 1988, p. 33).

 While such statements from a noted mathematics educator and researcher serve to
set the direction for the future of mathematics education, they do reveal a thinking
that works from the mathematical content or discipline to the situation. As will be
shown in later discussion, a move towards mathematics that derives from the
modelling of situations may be the new direction for numeracy education.
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 Several states in Australia have been considering undertaking considerable
professional development work in shifting teachers’, children’s and the community’s
perceptions of the purpose of mathematics education to be closer to these definitions
of numeracy. The report of the Numeracy Education Strategy Development
Conference (AAMT, 1997) similarly defined numeracy by saying:

 This project identifies the following elements as central to any description of
numeracy.

 Numeracy involves

 … using

 … some mathematics

 … to achieve some purpose

 … in a particular context (AAMT, 1997, p. 13).

 These recent conceptualisations of the goals of mathematics education and numeracy
from an informed perspective have clearly merged. They represent a development
even in a short time from the publication of Mathematical Knowledge and
Understanding for Effective Participation in Australian Society (AAMT, 1996) which has a
much more traditional focus on content, traditional areas of mathematics (Number,
Space and so on), and separate headings for ‘Representation of mathematical ideas’
and ‘Applying mathematics and solving problems’. In a conceptualisation of
mathematics education based on numeracy, these latter two headings become the
major frame. The content areas become relevant knowledge to be developed and
called upon, again in a variety of ways, to support numerate performance.

 For the remainder of this paper, the term numeracy will be considered to be
synonymous with the goals of good mathematics education and the directions in
which our future mathematical education practices should be heading. It will not be
treated as having a separate role to play from mathematics education in the
education of Australian students and adults. In making this move to consideration of
a single term, all of the previous demands for mathematics education — ‘to learn’
mathematics, ‘to learn’ in other disciplines, ‘to do’ work and for personal lives —
must be included.

 Moving to the use of the terms numeracy education and performance in this manner
will alleviate some of the problems encountered with popular perceptions of
numeracy. Conversations in the general community on this topic usually revert to a
focus on number and the needs of those with very limited numeracy skills,
paralleling public attention to spelling or the skills of decoding in literacy. Just as
literacy has been reconceptualised as a continuum, rather than the dichotomy
literate/illiterate, recognising that we all have different degrees of literacy in
different contexts, so numeracy can similarly be seen as a continuum of performance.
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Just as literacy in the singular has been reconceptualised as literacies, even
multiliteracies, identifying that in different contexts we call upon different types of
literacy performance, often even within a single context (Cumming, Wyatt-Smith,
Ryan & Doig, 1998), so too numeracy can be reconceptualised as complex and
multiple. As later discussion will show, adults and children can demonstrate that
they possess much numeracy knowledge and performance that has not been
acquired in schooling, but which has been developed in various ways. This
recognition of the nature of numerate performance is very important for future
directions for mathematics education, once again going beyond such recent
statements as:

 It is in the national interest that schools promote high levels of achievement
within rigorous mathematics programs, and that as many individuals as possible
achieve those levels. All Australian citizens need a broad understanding of
mathematics if they are to participate in decision-making about their social and
physical environment (AAMT, 1996, p. 5).

 As will be shown later, it is reasonable to assume that most Australians do have a
broad background in mathematics, as they do already participate in numerate
decision-making about their social and physical environment. As we build links
between modern technological society and the numeracy education curriculum of
schools, it will be important to remember the mathematical knowledges that all
learners bring and the range of cultures and contexts in which they have been
developed. A key factor in developments for the future will be for school
mathematics education to embrace society and to look from out in, rather than from
within the narrow traditions that have developed over time in school out to the
much more complex but invigorating world.

 Different numeracy education needs for different learners

 A major consideration in looking out is to consider the different numeracy needs of
learners for their life outside of and after schooling, and to consider whether one
approach or philosophy of numeracy education can serve all of these needs. Stepping
away from mathematics, a parallel discussion can be found to be occurring in science
education. Scientific literacy is a term which is used as freely today as numeracy, and
not surprisingly used with many different conceptualisations. In some ways, the
appendage of the term ‘literacy’ to any term such as scientific or technological, is
used as synonymous with a type of fluency, similar to some uses of the term
numeracy. The terms are used to imply sufficient scientific knowledge and skills to
be able to use these appropriately and with appropriate understanding and critical
skill. Wilson (1998) has provided the following framework for considering scientific
literacy or literacies:
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 …literacy in the context of school science refers to the ability to use practices
associated with the formulation, representation and communication of meanings
about natural phenomena, objects, events and their inter-relationships.

 This parallels closely the previous considerations of numeracy. Further, Wilson
identifies that to participate in the discourse involves: learning to understand science;
learning to act in a domain of science (current notions of scientific or mathematical
knowledge); and learning through engagement in problem tasks. Wilson identifies
that these are all essential but to be developed to different degrees for four types of
users following science education: the knowledgable citizen; the technical/trades
person; the professional such as engineer or doctor; and the professional scientist.

 Clearly, these same four types of users should be the outcomes of mathematics
education. However, mathematics or numeracy education in the past has had trouble
identifying similar outcomes. Courses in secondary schooling which focus on life
skills mathematics have usually been taken by those who have been identified
through schooling as ‘not good at mathematics’, and courses with ‘traditional’
mathematics content taken by other students regardless of their expected future use
of such mathematics. Taking a numerate approach to mathematics education,
paralleling a scientific understanding and process approach to science education,
means focusing on the context of application and problem-solving strategies, rather
than primarily on the domain or content knowledge of the discipline. This does not
underplay the importance of either domains of the mathematical or scientific
discipline knowledges, but reinforces that these become learned as necessary support
for numerate or scientific behaviour. Definitions of numeracy or good mathematics
education have included, for a long time phrases, such as ‘ability to select and apply
mathematics in appropriate contexts and ways’. Hence it would seem important to
focus on the development of this aspect of mathematics — application,
appropriateness, problem-solving — with supporting domain knowledge, rather
than on the learning of domain content in ways that make it meaningless for
students. This can be achieved.

 Pacing

 Cumming et al. (1998) identified that a major literacy demand of post-compulsory
schooling related to focus on curriculum content and the pacing of teaching to ensure
coverage of this content. Students who have difficulties at any phase of delivery, who
have not acquired the modes of operating within a subject, or the prerequisite
domain knowledge, or who do not have easy access to the vocabulary of the subject
to participate in the discourse of learning, will fail. The following transcript from 55
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seconds of a mathematics lesson to Year 12 students demonstrates this point. The
lesson continued in this way for 70 minutes.

 T: …Now where am I up to. On to twenty-six six now. Probably where we have
little bit more important things to go through here. OK.

 This one here is a parabola (reference to equation in textbook problem). You have to
recognise it as a parabola. The way to do that of course is to look at the x squared
and the y squared. In this particular case only the y is squared and the x is not.
With the parabola you also have to realise which way they are oriented. If it’s y
squared equals four a x, the parabola is oriented this way or this way (making
visual direction sign with hand over the OHT). If it’s x squared equals four a y it’s
going to be concave upwards or concave downwards and you have to recognise
that and apply the appropriate formula (Cumming, 1998, p. 269).

 The pace in this lesson was fast, the demands in terms of prior knowledge were high,
the presentation to develop meaning was visual and oral, through teacher talk and
reference to an overhead with a prepared diagram and some lines of equation
solutions.

 While pacing emerged as an issue in the Cumming et al. (1998) study across all
subjects, it was most apparent in mathematics classes. An overall recommendation of
the study was ‘that authorities examine more flexible structures for curriculum
delivery in schooling in the post-compulsory years’. It was expected that similar
issues would arise in earlier years. A predominant concern in mathematics education
has been the focus on addressing content, regardless of the degree to which students
acquire such content, rather than addressing student learning. Mathematics
education has been a process of selecting out, rather than bringing in, mathematics
learners. Mathematics teachers can identify stages at which students start to fail in
mathematics, such as:

• Grade 4, when the curriculum moves from simple computational and spatial
frameworks to encompass tasks in word form,

• Grade 7 or 8, when students leave the integrated education setting of primary
school and engage in subjects called mathematics, with higher and lower levels,

• Grade 10, when certification and pacing issues can impact on student learning,

• Grade 11, when again students choose between levels of mathematics and can
be labelled as taking ‘vegie’ maths and failure is attributed to the introduction
of more ‘difficult’ content or levels of abstraction.

 The mathematics content is seen as void of context, with problems in learning
attributed to the learner, not the mathematics. Yet as Bruner (for example, 1960) has
long stated, ‘…the foundations of any subject may be taught to anybody at any age in
some form’, while notions of difficulty are often curriculum and teaching induced.
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 The effects of pacing and perceived needs to cover curriculum content may be more
problematic in secondary schooling than primary schooling. Syllabus documents are
directed by State Boards of Studies and must be met for certification. Teachers in
secondary schools have subject-specific roles. They define themselves as teachers of
‘history’ or ‘mathematics’, not as teachers of learners. These current curriculum and
pacing demands are bound to result in selecting out. We select out on the basis of
handling of quadratic equations, trigonometry, regardless of the applicability of such
content to the eventual numeracy needs of the learner. An approach that focuses on
application and problem-solving, with the introduction of domain knowledge, not
only as needed but also when the learner has an appropriate background, will enable
much more ‘selecting in’ of learners.

 Such an approach would enable schooling to meet the needs of the four types of
numerate person previously considered: the knowledgable citizen; the
technical/trades person; the professional such as engineer or doctor; and the
professional mathematician. At present mathematics curriculum focuses on building
the repertoire of domains of knowledge to the most abstract forms and expects the
development of problem solving abilities to develop within these contexts. This is the
view reinforced in the statement of Mathematical Knowledge and Understanding for
Effective Participation in Australian Society (AAMT, 1996). The development of
problem-solving abilities and the ability to identify that a new mathematical
knowledge is needed is a more appropriate framework of development. In this way,
the repertoire of mathematical domain knowledge needed by an engineer1 can be
developed. In this way, also, students need not fail and be filtered out at an early age,
but may over time develop sufficient mathematical interest and expertise to wish to
undertake further studies.

 Society’s acceptance of poor mathematics education: ‘I’m no
good at mathematics’

 The affective outcomes of current approaches to mathematics education, albeit being
addressed in the early years of schooling through advocacy of different approaches,
have been highly negative for many generations. It is not a public embarrassment to
say ‘I’m no good at mathematics’, as it is for literacy (Cumming, 1996; Kerka, 1995).
And yet,

                                                   
1 For example, a final year mechanical engineering student about to undertake an examination in robotics explained that the questions

would involve some simple mathematics questions to do with going forwards and backwards, which relate to matrix and vector algebra,
and draw on the trigonometry knowledge such as cos and sin functions developed in high school. For this student all of the domain
knowledge developed as a result of schooling is important. However, for the majority of students this would not be so relevant and work
in these areas may have impeded numerate development.
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 …mathematics is used in many everyday situations — cooking, shopping, crafts,
financial transactions, traveling, using VCRs and microwave ovens, interpreting
information in the media, taking medications, different people need different sets
of math skills, and then numeracy needs change in response to changes in life
circumstances, such as buying a car or house or learning a new hobby. (Kerka,
1995)

 This elaboration of the different numeracy knowledges that adults demonstrate,
perhaps in spite of schooling, shows that it should be a public embarrassment to
mathematics curriculum and policy developers and educators that expression of
failure in mathematics is such a common statement. Schools in the past have
convinced many people that they cannot do mathematics, despite their success in
adult lives in many numerate behaviours, and such adults will always identify
mathematics with specific types of ‘sums’ or ‘word problems’ that they could not do
in school. While efforts are being made in primary schooling to address such
concerns, practices in secondary schooling have changed little. Many high school
graduates, despite high enrolments in and participation in mathematics studies, are
still essentially maths-phobic, an outcome that is attributable to the nature of
curriculum content and pacing, not the aspirations of teachers.

 Assessment issues, effects of context and future directions

 One issue in mathematics assessment that will have impact in the future on
mathematics education relates to current initiatives in the national numeracy
benchmarks (see, as an example, the approved literacy benchmarks for Years 3 and 5,
Curriculum Corporation, 1998) and state-wide assessment procedures. The draft
numeracy benchmarks represent statements of minimum domains of knowledge and
processes that students should achieve at various stages of schooling. When finalised
and implemented, the benchmarks should provide positive guidance for all students.
After the difficult work of defining the benchmarks, reporting mechanisms based on
the benchmarks need to emphasise best assessment practice.

 Lokan and Ainley (1998), in a report on the Third International Mathematics and
Science Study (TIMSS), noted differences in student performance on the closed
TIMSS items and more open performance assessment tasks which were more
demanding to administer but more clearly related to current conceptions of good
mathematics education.

 The relationships (between success on performance assessment tasks with
achievement on the written tests) are positive, as would be expected on measures
of achievement, but generally lower than one would find between measures of
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achievement assessed on related written tests. The correlations are low enough2

to indicate that the performance assessment tasks are likely to be measuring
somewhat different skills from those measured in the written tests. (Lokan &
Ainley, 1998).

 Past assessment practices in mathematics have clearly been on the traditional lines of
the written tasks, while progress is being made towards more problem-solving,
holistic and open tasks. Australian students overall performed well on the traditional
tasks as well as on the performance tasks in the TIMSS, although these were not
undertaken by many countries due to implementation constraints. Lokan and
Ainley’s finding confirms that how something is assessed influences what it is that is
assessed, and hence the need for assessment practices to reflect new assessment
paradigms. Overemphasis on outcomes of the more limited tasks from the TIMSS,
that do allow full international comparison, could lead to a narrow focus for
mathematical outcomes. It should be noted that countries that outperformed
Australia on the written tasks, mainly the Asian countries of Singapore and Hong
Kong, are seeking to enhance performance in problem-solving even at the risk of a
drop in other areas of performance. Plenary speakers from these countries at the
TIMSS Conference held by ACER in Melbourne in 1997, discussed the changes being
made to meet these goals. Zhang, Leung and Wong (1998) found that while Chinese
students do very well in the traditional and timed written tests, they show the same
lack of understanding on nonsense problems, and in calculating reasonable answers,
as in other countries. Zhang et al. concluded that the Chinese curriculum, with too
much emphasis on rote learning and the practising of identified word problem types,
was not doing sufficient work to develop good problem-solving skills.

 Cumming and Maxwell (1999) provide a detailed consideration of ways in which the
search for the development of authentic achievement in general has been redefined
into pseudo-authentic assessment approaches. Mathematics education is one of the
worst users of these, where both assessment tasks and teaching tasks have been
embedded in pseudo-contexts which do not encourage the ‘mathematising of
context’ (Boaler, 1993, cited in Zevenbergen, 1997). Cumming and Maxwell note that
in many circumstances what eventuates is a poor level of camouflage which still
involves meaningless activity. Worse still, research by Black (1991), (derived from the
work by Schofield and others, 1988), has shown that translating scientific tasks into
everyday contexts (both presented in written form) can reduce student success.

 Contexts of assessment have been shown to be important not only because they
influence what is measured, but also because context can affect performance
negatively or positively. Research work has shown that performance on
decontextualised tasks can be poor relative to performance on contextualised

                                                   
2 .25, .28, .35, .36, .43, .45
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activities. For example, work by Lave, Murtagh and de la Rocha (1984) showed that
adults who scored an average of 59 per cent on arithmetic tasks presented in a
school-test manner, had accuracy rates of 98 per cent on similar tasks when shopping
in the supermarket. Nunes, Schliemann and Carraher (1993), however, have shown
that such differences in performance may not necessarily be due to the influence of
school or ‘real life’ contexts, but due to differences in performance between oral and
written mathematical knowledges and skills. What is perhaps more important is the
finding by Jenkins and Kirsch (1994), in the context of an adult literacy survey, that
adults who had used in their jobs or lives the types of quantitative literacy tested
were more proficient on those tasks than those who had not. Familiarity with a task
in context has long been known to have a positive effect on performance (Cumming
& Maxwell, 1999).

 Scribner (1975) has presented different issues that relate to the influences of cultural
context on equity of assessment outcomes. In her work, she showed that assumptions
that all cultural groups had the same logic and the same taxonomic organisation (the
way of organising categories of information mentally) of knowledge, were not
supportable. In work with the Kpelle and Vai people of Liberia she was finally able
to identify the taxonomic procedures that they used, by altering tasks until she found
one that induced the organisation of recall by taxonomic categories. Straight
Westernised tasks were not successful. Similar issues are of concern in Australia
where systems of numeracy assessment, which assume common logics and
taxonomic organisations, may result in cultural bias rather than adequate
representation of what the student does know. Scribner questioned the use of
inappropriate schema that would inevitably demonstrate ‘the inherent stupidity of
millions of children’ (p. 81) rather than demonstration of capability. This is of
particular concern with indigenous Australians who in some contexts may be
working on different organisational structures of information than urban white
children. Yet frequently we still implement such questionable assessment programs.

 Scribner (1976) certainly raised the overall question of comparability in international
assessment regimes by noting that:

 … achieving equal familiarity of problem content in two cultures or in two
populate groups within a culture does not ensure comparable task difficulty; the
dimension of familiarity may be an irrelevant dimension for one group, a
facilitating dimension for a second, and a disruptive dimension for a third
(Scribner, 1976, p. 100).

 While few questions appear to be raised about the TIMSS outcomes, questions have
certainly been raised about the cultural equivalence of items on the International
Adult Literacy Survey (IALS), in which Australia participated through the ABS
survey (ABS, 1997). For Australia, cultural distance from the initiators of the IALS,
the USA and Canada, is not great. However, a study currently being undertaken by
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France and other European and non-English speaking countries, examining the
outcomes for the adult literacy survey, is demonstrating concern with item
comparability with non-English speaking cultures.

 Contexts of time may also be relevant to considerations of assessment issues. Many
research claims about numeracy performance have been made on the basis of fairly
narrow conceptualisations of mathematics and narrow paper-and-pencil testing,
albeit at a time when advances in conceptualising the nature of mathematics were
not greatly advanced. For example, McGaw, Long, Morgan and Rosier (1988/1989)
in a study of ‘numeracy’ in Victorian schools, used paper and pencil testing to
examine student performance on isolated items such as reading scales in grams,
comparing digital and analogue clocks to calculate difference in the time depicted,
and picking of a correct option to complete a symmetry diagram.

 Data released recently (Marks & Ainley, 1997) provided a comparison of
performance on the same or similar items by Year 9 students from cohorts twenty
years apart. Overall, they noted that there had been little change in performance on
these types of tasks, although there was little consideration of the relative relevance
of such tasks in 1975 and 1995. In 1975 Macintosh computers had not been invented;
a Commodore 64 was the highest technology available for homes and even
professional computer users had restricted computer memory available for programs
often submitted on punched cards; autotellers were not around; microwaves and
VCRs did not exist. Word processing on computers was an extremely arduous task
with no relation to the written word and hand calculators did the most basic tasks.
Computer spreadsheets and graphical calculators were virtually unknown. The
virtual world of today did not exist. Is it defensible to be comparing ‘numeracy’
performance over such a twenty years of Australian society using items that may
even have been questioned in 1975? At what point will we start developing
assessment instruments that will demonstrate what students can do? Many numerate
behaviours that we expect Year 9 students to exhibit today were not even able to be
considered in 1975.

 Therefore, it is important as we move towards new numeracy policies for the new
millennium that we ensure that the numeracy assessment policy moves also. As
Land (1997) has noted, in the Proceedings from the 1996 CRESST Conference, the
changes to good performance assessment which are identified by the mathematics
education and the assessment community as essential, will not only have to be
responsive to the technological societal context but may also be making use of
technologies as the following examples show.

 Future generations of tests will need to tap nontraditional constructs, base test
designs on cognitive principles, and increase the diversity of problem types.
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Bennett3 predicted that large-scale assessments would soon include computer-
based presentations of problem types not possible with paper-and-pencil tests.
Bennett shared multimedia prototype items using historical speeches and
newscasts to illustrate the potential of presenting and asking students to respond
to ‘dynamic stimuli’ (Land, 1997, p. 20).

 Land also reports that a colleague was able to demonstrate:

 … the use of neural network technology to permit real-time assessment of
complex problem solving. In one of Stevens’ prototypes, medical students were
presented with realistically sketchy information about a patient’s symptoms, a
set of diagnostic tests that they could order, and a ‘library’ of reference materials.
As the students worked through the options presented by the computer
program, their choices were recorded and could be compared with patterns of
hypotheses generated by expert diagnosticians investigating the same problems
(Land, 1997, p. 20).

 Such directions in assessment, for both large-scale assessments and school-based
assessments, accord with directions numeracy education should take, towards the
holistic context and emphasis on problem solving and emulation of expert strategies
of solution. There are clear implications of course, for resources, cost, equity of access
and practice, telecommunication technologies and security of data for national
assessment programs. However, the desirability of the type of information that
might be able to be obtained about student understanding and reasoning processes is
far removed from the narrow confines of previous paper-and-pencil tests in
mathematics.

 New directions in conceptualising mathematics education:
Towards the visual, spatial and oral, modeling and
representation, problem-solving

 It is being argued in this paper that the modern technological world is increasingly
visual and oral, returning to the world of the past but with much greater access to
information and communication presented in tabular and visual forms. As Owston
(1997, p. 29–30) notes:

 …students in our public schools and in a good many colleges and universities do
not know a world without the computer… It is an integral part of their world:
they play with, are entertained by, and learn with the computer. They tend to be
more visual learners than previous generations because their world is rich in
visual stimuli… So it is fitting that we design learning materials and

                                                   
3 Randy Bennett, Educational Testing Services, in presentation to 1996 CRESST Conference.
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opportunities that capitalize on what we know about how our students prefer to
learn.

 The visual world is already the world of the expert. Woolnough et al. (1997) found, in
a cross-cultural comparison of scientists, that scientists believe that they

 … communicate better in diagrams than in words. This latter characteristic is
perhaps the most striking, and most significant of all. In all countries the
scientists perceive themselves as being able to communicate best in diagrams
rather than in words. This ability to be able to think pictorially, with good spatial
awareness, is important for scientists. The ability to be able to communicate well
in words is one which scientists need to develop if they are to be able to
communicate with the ‘non-scientific’ world and each other (Woolnough et al.,
1997, p. 117).

 Students in all countries, who planned to be scientists, also responded more
positively to working on extended practical projects as the focus of their work,
preferring to plan their own experiments more than non-scientists, who preferred to
be given clear instructions.

 Good mathematicians are also able to relate to the mathematical world visually and
spatially, and prefer to work on holistic problems. Hence, not only is it suggested
that today’s students participate in a visual world, but also spatial skills and
modelling appear to be key needs of numeracy education. Nunes et al. (1993) found
that differences in performance between ‘street’ arithmetic and ‘school’ arithmetic
were due not to the context but to the modes of operation. They consider that ‘street
arithmetic is oral and school arithmetic is written’ (p. 27) and show consistent results
in school contexts where students performed better orally than in writing. I have
often argued elsewhere (Cumming, 1993b) that adults deemed to have numeracy
problems possess considerable mathematical knowledge and logical argument in
oral contexts but lack the written code of formal mathematics.4 Nunes et al. (1993)
found that when students are dealing with written mathematical tasks there is loss of
meaning and hence poor performance. When tasks are undertaken orally, meaning is
preserved. Nunes et al. suggest that oral practices demand semantic knowledge
(p. 54), a finding consistent with the finding by Cumming et al. (1998) that when
students and teachers focus on the development of knowledge and expertise around
a task (‘doing’), whether ‘brains-on’ or ‘hands-on’, then the development of meaning
and transfer are more likely to occur. Scribner (1985b) found similar results and loss
of meaning in work with drivers who regularly calculated bills for goods.

 On a paper-and-pencil arithmetic test such as those administered in school,
drivers, whose on-the-job accuracy rate was near perfect, made many errors on

                                                   
4 It is through examining not just the needs but also the expertise of adult numeracy learners that I realised a focus on the building blocks

of school mathematics curriculum was not only inappropriate for their instruction but also most likely what had been detrimental to their
learning.
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decimal multiplication problems similar in format to their pricing problem
(Scribner, 1985b, p. 326).

 Cumming and Morris (1991) and Cumming, (1993a) documented exemplary practice
in adult numeracy instruction that focused on visual and spatial explanation. Current
mathematics curriculum reinforces problems for children as it seeks to make as much
work as possible into a written form, leaving out as much of the specifics of the
situation in order to strive for generality. Goals for mathematics education include
ability to communicate findings to others or a general audience. Generally, this
communication skill is then tested in writing, again changing the nature of the
expectation and the performance that could be demonstrated. In fact, Cooper (1994),
raising a similar cultural context concern as Scribner (1975, 1976), has shown that the
introduction of writing and communication into the area of mathematics assessment
is seen by some to introduce equity issues and to be a shifting of the ‘goal posts’. This
was particularly felt by groups without English as a first language who felt that they
had just mastered the expectations of the old curriculum, when the new
requirements were introduced.

 The attempt to create generality in mathematics education, and hence abstraction, is
of course related to notions of transfer. If the essence of an activity is extracted and
taught, it is assumed that that knowledge will then be applied in a range of contexts.
For example, if we teach all children the addition tables, we assume they will use
these tables in everyday contexts. The evidence on transfer and situation specificity
of performance and knowledge development causes questioning of this basic
assumption. There is considerable educational and psychological debate about the
extent to which knowledge gained in generic or abstracted ways is used by people in
other contexts. There is a clear need for an appropriate context to be established for
any learning activity. Nunes et al. (1993) found that if tasks are appropriately
designed

 …preservation of meaning in setting up the problem-solving strategy illustrates
how a mathematical schema of a situation can represent both situational aspects
and mathematical relationships. A schema of this sort is naturally somewhat
general but also somewhat specific to similar situations (Nunes et al., 1993, p. 61).

 Nunes et al. address concerns about specificity, generalisation and transfer, pointing
again to the role of mathematics education in developing modeling ability and
problem-solving.

 Modeling is not concerned with the quantification of one object but with the
mathematization of situations. The relationships between quantities are the
essential aspects of a model (Nunes et al., 1993, p. 137).

 The role of specific domain knowledge is still important, with students and workers
needing to ‘understand the mathematical invariants as well as the particulars of the
situations’(p. 139). Street kids, adults shopping in supermarkets, pool builders



 © Commonwealth of Australia 2000 21

(Zevenbergen, 1997), workers in dairy factories (Scribner, 1968) all used idiosyncratic
approaches to their solutions in different contexts, but all use common mathematical
elements such as number, sequencing and addition. Therefore these invariant
components do emerge as essential to general and specific situations. As Landman
(1997, p. 18–19) notes, it is important that when we are developing these
mathematical knowledges we need to get across to students that the ‘mathematics
that is taught is applicable, powerful, and ultimately will be necessary’ for their
future work and life. Teachers will only be able to do this, of course, if first it is true,
and second they believe it themselves.

 Along with these elements of knowledge, however, it is also important to consider
the aspects of modeling, interpretation and reasoning, and particularly the ‘ideas that
bring to the fore the importance of forms of representation in thinking’ (Nunes et al.,
1993, p. 144–5). Nunes et al. echoed the concerns of many others regarding the
difficulty of finding suitable problems for classroom use that enable students to:

 …work on understanding relationships between variables, to develop models,
and to be able to proceed from their own informal mathematics constructions to
what could be accepted as informal mathematics (Streefland, 1990, cited in
Nunes et al., 1993, p. 148–9).

 Curriculum that presumes the appropriate mathematical models and seeks to teach
students to learn and apply the same will clearly be ineffective.

 As noted previously by Wilson (1998), the discourse of learning, or the oral
discussion of the learning environment, is as important to the learning of
mathematics as considerations of what is important to be learned. Hiebert and
Wearne (1993) exemplify research that has shown that how we teach affects what is
learned and how successful learners are. A traditional approach in Western
mathematics education has been the completion of many examples of problems or
algorithms in a single lesson. However, in an experimental study with students in a
number of Second grade classrooms in the USA, Hiebert and Wearne found that:

 …students (who) received fewer problems and spent more time with each
problem, were asked more questions requesting them to describe and explain
alternative strategies, talked more using longer responses… showed higher
levels of performance or gained more by the end of the year on most types of
items. The results suggest that relationships between teaching and learning are a
function of the instructional environment, different relationships emerged in the
alternative classrooms than those that have been reported for more traditional
classrooms (Hiebert & Wearne, 1993, p. 393).

 This reinforces the previous statement that students’ failing in schooling, and even
eventual early school leaving, may well be in response to teaching, not an internal
failing of the students themselves. Hiebert and Wearne’s results concur with recent
findings of an investigation of the nature of learning activities in Japan, undertaken
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as a result of their success in the recent TIMSS, and again with the findings on
classroom events in Cumming et al. (1998). More talk, more conversations between
students and teachers about the topic, more exploration of meaning and
understanding through orality, less concern with curriculum content coverage, lead
to better learning outcomes.

 Developing specific skills for future numeracy: memory,
pattern recognition, clustering/classification skills

 Mathematics education in the past has incorporated a number of desirable goals
which have become decontextualised from their purpose. Three such goals are
estimation, memorisation and clustering or categorisation. Each of these areas is
important for numerate behaviours. Unfortunately education practice has led to the
teaching of these as ‘topics’ and the testing of these as ‘topics’ rather than in
situation. For example, estimation or knowing the degree of precision appropriate for
a context is very important. In mathematics text books, estimation becomes a series
of items such as:

 1240 ÷ 29 is about

 A 20 B 30 C 40 D 50 E 60

 (1989 YIT and AYS Maths/Numeracy Test, ACER)

 Teachers and students could focus on the teaching of such items and remove notions
of estimation from situations where they might occur, some of which are
documented in following sections analysing the ways in which workers work.

 Much mathematics education and public debate focuses on memorisation of tables or
procedural applications of computations, formulae and so on. Certainly all of the
analyses of workers demonstrate that number knowledge and computational skills
are called upon by workers on a very regular basis, at all levels of expertise, and
resorting to calculator support for every occurrence may not be very efficient.
However, more important than the debate about whether instruction should focus on
these memorisation skills, is a debate about whether through various areas of
learning, including future mathematics education, students should be helped to
develop strategies to develop memorisation skills. In a learning environment that
expects that all learning occurs by osmosis, and that memory will develop, some
students will not develop such skills. They will then be disadvantaged in the
workplace, where memorised information and strings of number or letter sequences
are frequently encountered. In a recent example, when buying new tyres, the tyre
salesman went from my car to the computer screen and typed in a sequence of eight
numbers and letters which corresponded to the details of the tyre needed. The
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computer records information on some 2,000 tyre lines. By entering the code, for
which there are some 180 odd distinctive codes which the salesman had memorised,
the options were restricted to about 20 types from which a choice was then to be
made. Through the modern workplace, the typing of similar strings into computers
is common. Watch next time you make a purchase or request information. Most
computer software requires some knowledge of memorised sequences on the part of
the user to make progress. Tools such as pre-labelled cash registers in some
restaurants are rare.

 Good learners will of course quickly develop the necessary knowledge in context.
They most likely will already have well-developed memorisation skills and strategies
for chunking information. Poor learners will not, and will not demonstrate
efficiencies in the workplace, particularly in sufficient time to be employed or
maintain employment. Direct instruction could assist here, with the proviso that
students understand the contexts for which they are learning such skills and practise
them in appropriate contexts — perhaps the memorisation of library access codes,
computer Personal Indentification Numbers (PINs), personal IDs, subject codes and
so on. And with the proviso that students are not assessed on whether they can
remember sequences of numbers, and determined to be failures if they cannot.

 As mentioned earlier, one component of mathematics education has been the
repeated solution of problem types in order to develop pattern familiarity and build
repertoire. This may still have a place to play, but its role is no longer so important.
Firstly, those students who may become mathematicians or professionals using
considerable mathematics, never did need to practise as much as the whole class was
required. Research over time has shown that most teachers aim their teaching at
mastery of content by students at about the 25 percentile of performance. These were
the students who indicate how much practice of repeated tasks needed to occur.
Students below the 25 percentile most likely went through the rituals but were still
not gaining understanding of the processes they were undertaking, nor their
applicability. Hence it will be more important for all students to undertake less
repetition and more work with the visual and technological aids to learning in order
to enhance understanding. The students who are most at ease with mathematics will
still build repertoire and can be given additional work to extend their knowledge of
the core components of traditional mathematics knowledge. It will be important to
build the generic knowledge and flexibility indicated in later discussion as essential
numeracies for future employment. It is interesting that Sowder, quoted in Fennema
and Carpenter (1998, p. 12), has noted that:

 Research since 1955 has shown that ability at non-standard computation that
calls for idiosyncratic, on-the-spot methods for finding solutions is positively
related to mathematical achievement… and confidence…
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 A focus on repeated practice of tasks, without reference to problem-solving contexts
and appropriate selection and usage of mathematics, will therefore not disadvantage
the better students, but will continue to disadvantage the less confident students.

 The work of Scribner who explored the way people are numerate and develop
strategies of operation in the work place, has a further important feature to be
considered in new conceptualisations of mathematics education. Scribner’s work
(1975, 1985a) on classifications and taxonomic organisations, in conjunction with the
way people work, showed that a desirable outcome for students is the capacity to
classify on various characteristics.

 Overwhelmingly, workers’ dairy product associations were of a complex nature,
involving several dimensions at once, such as quality and kind…

 … drivers and warehouse operators also grouped by size… (with) ways of
classifying linked to modality of encounter and purpose (Scribner, 1985a, pp.
311–3).

 Again, current mathematics education can state that it emphasises pattern
recognition, and classification of objects in various ways. However, again in
assessment approaches a multiple choice item with different options available to
complete a figure around a line of symmetry, becomes the teaching, learning and
assessment focus (see, for example, Item 14 on the 1995 LSAY Maths/Numeracy
Test, ACER). Classification tasks and completion of pattern tasks are similarly
decontextualised from the situations in which it is hoped that learners will apply
such information. This decontextuality of performance and directing of teaching
emphasis by task practice and assessment are the reasons why such learning does
not transfer beyond schooling. Students are not given the purpose for such learning,
and are not driven to use such knowledge in the search for minimisation of work and
efficiency, identified as needs in the workplace by Scribner. It is important for us to
help all students to develop classification and pattern-recognition skills, and to
compare skills across different cultural taxonomies from which they might operate.
However, the context and purpose should be the instructional focus and framework
for evaluation.

 Equity

 Schools must have a role to play in addressing equity issues related to the changing
role of technology in education. Mathematics education has a specific role to play in
this. As Luke (1997) has noted, new technologies tend to be used first by the affluent
and in some cases can remain the domain of the affluent. While automatic teller
machines are now common in our society, they are still used only by those with
finances to transact. At the moment there is a contrast between rural and urban users
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of technology. While the growth of use of computers and resources such as Internet
in rural areas is rapid, such usage will always be dependent on simple factors such as
constant electricity supply and more pervasive influences such as access to technical
support, something taken for granted in urban communities. Schools will therefore
be a conduit for ensuring that all students are technologically fluent, that all students
understand the possible applications of software such as spreadsheets and graphical
calculators, regardless of home and environmental background. An indicator of
success in reading for some time has been access to books or magazines in the home.
A similar indicator for future job success may depend on technological familiarity.

 Cultural issues have been discussed in the section on Assessment and also in
considerations of what technological society wants to be included in education for
the future. It is equally important that in devising new curriculum and new
numeracy education policies, that issues of cultural understanding should be
addressed. In schooling, it is important to focus on ways of teaching subjects such as
mathematics, in ways that consider students’ literacy, language and cultural
heritages. Lee and Fradd (1998) have noted that participation in the discourse of
science means that students need to have a shared language and cultural
understanding.

 Talking science is closely related to literacy development and representational
fluency, involving written, pictorial, graphic, and electronic formats (Lee &
Fradd, 1998, p. 17).

 Mathematics involves similar concerns. Cumming et al. (1998) identified that the use
of appropriate terminology in classroom discourses appeared to assist student
learning and understanding. It was easier for students to develop shared
understandings about conceptual terms and relationships and to follow instruction
when the discourse focused strongly on these. By contrast, the use of more general
language, which can introduce confusions with the many meanings of different
phrases, is more difficult to follow. Cumming et al. suggest that direct instruction in
the terminology of a subject and exploration of ideas and meanings until common
understandings have developed, are important for student learning. Jones (1998),
providing numeracy instruction in an auto factory, similarly found that

 …for this group problems are less mathematical numeracy and more numerical
language caused by different ways of expressing numerical factors in different
countries (Jones, 1998, p. 82).

 Australia prides itself on being a multicultural country, with its own Indigenous
people who have a range of language backgrounds, and people from many other
backgrounds with a diversity of cultural heritages and languages. Past mathematics
education has not addressed the issue of ensuring good educational outcomes for all
learners. Policies and practice at all levels must consider issues and strategies to
ensure that cultural bias does not develop.
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 Gender effects are a specific cultural issue that will also need to be counteracted.
There is already a growing body of evidence that boys are making more effective use
of technology than girls, in ways that will relate to vocational usefulness. While girls
are outperforming boys on standard reading and writing tasks, and hence concern is
being expressed about underperforming boys, concern might be more meaningfully
addressed as to whether boys are attaining more technologically sophisticated and
vocationally relevant skills and the girls, conforming to traditional school
expectations, missing out. For example, Cumming et al. (1998) found in a survey of
literacy practices with students from Years 10 to 12 that boys spent significantly more
time than girls reading ‘manuals and instructions’, reading about ‘computer sources’
and ‘computer games’, writing email messages and playing computer games (p. 92).
Girls spent more time than boys in more traditional activities such as reading books
and letters, writing letters and diaries. In an Internet competition sponsored by the
Courier-Mail newspaper for school students in 1997, the final was won by a Year 9
boy, with only one of the final sixteen contestants a girl.

 Male and female enrolment patterns in mathematics subjects continue to be a
concern. The National Report on Schooling in Australia (1998, p. 88) notes a number of
gender patterns with fewer girls than boys enrolling in ‘higher’ mathematics. While
this effect can be attributed to a number of factors such as the broad range of options
available, the perceived masculine nature of mathematics, and the tendency for girls
to be less risk-taking in enrolling in subjects unless they are sure that they will be
successful, the figures are cause for concern. It will be important for future
mathematics education to become more congruent with our technological society,
and it will be important that this be done in a way that ensures equity for all groups,
and not the further advancement of a particular subgroup in our culture. As
Fennema and Carpenter (1998) note, reform that does not address equity, and gender
equity issues specifically, is inadequate. Fennema and Carpenter report on a very
interesting study, and then allow researchers from different philosophical and
theoretical perspectives to comment on the study. In their study with children in
Grades 1 to 3, they used mathematics teaching procedures based on current
mathematical guidelines for best practice, and interviews to discuss students’
learning and understanding. They found that by Grade 3, boys were superior on
extension problems that had not been previously encountered, and that while girls
used more concrete solution strategies like modeling and counting, the boys used
more abstract solution strategies and conceptual understanding. While various
interpretations of these outcomes were made, the outcome with which I am most
sympathetic is one by Hyde and Jaffee who hypothesised that girls were probably
following the instructional guidelines and expectations of teachers, that is exhibiting
compliant behaviour, while boys were developing their own procedures regardless
of teacher input. This raises a general concern that many procedures in mathematics
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education and assessment in the past have rewarded compliant behaviour, while it is
the student who dares or risks who may make greater learning gains.

 Fennema and Carpenter’s concern, however, was that they implemented a
mathematics education program that had

 …an underlying assumption that our program based on understanding will
enable all student to learn in an equitable fashion. This assumption may not be
valid (Fennema & Carpenter, 1998, p. 20).

 Fennema and Carpenter’s outcomes provide a warning that in the development of a
new numeracy policy that will have, hopefully, the intention of being a policy based
on equity principles, careful monitoring will need to be undertaken to ensure that
such outcomes do occur. If the basis of the new policy is to encourage a perception of
mathematics as modelling, with an element of risk taking, then it will be important to
provide scenarios where all students appreciate that this is the goal. As new
technologies are used, if girls and other cultural groups have had less involvement
with such technologies than white Anglo-Saxon Australian boys, it will be necessary
to monitor both progress and the affection of all learners for the technology.

 One of the increasing concerns of national agendas for benchmarks and standards to
be achieved for all students, is the implications of the agendas for groups with
special learning needs. Mathematics education has never clearly identified the best
ways to address the needs of these students, with conflicting emphases on
conceptual or basic number training. Educational policy now allows all students to
remain in schooling until at least the age of 18, regardless of the progress they make.
However this policy does not help to bridge the transition of students with
disabilities into the workplace, a goal which many students and their parents do
hold. Phelps and Hanley-Maxwell (1997) have examined different practices for
bridging this transition for youth with disabilities and found two promising
practices: school supervised work experiences; and functionally oriented curricula in
which occupationally specific skills, employability skills and academic skills are
systematically connected for students. Both of these approaches are consistent with
the proposed new directions for mathematics education, and Phelps et al. note that
such programs are most likely to be beneficial for all students.

 Impact of technologies on teaching and learning, virtual
reality

 In the past, ‘high level’ mathematics may have been the domain of a few because it
needed considerable chunking of mathematical knowledge and memory space to
manipulate this information. Technology reduces this demand. Good mathematics
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education no longer needs to be a de facto test of memory. Congruence between the
technologies of the world and the technologies of schooling and approaches to
learning is essential for the mathematics education policy of the future.

 Luke (1997) has noted the profound effect of technologies such as computers and the
Internet on home entertainment and workplace practice. It is important that
education keeps pace with such change. One effect has been the development of
‘hypertextualities’, the notions of multiple screens and formats for visualising and
presenting information. She notes that the introduction of such technology, ‘suggests
a radically different orientation to text, information, and the organisation of time’
(Luke, 1997, p. 18). However, at the same time software tools such as Internet search
engines are teaching different cognitive, logic and mapping options. These logic
operations are very mathematical and provide a good basis for discussion in this
area. Luke’s arguments emphasise the point that unless mathematics education in
schools embraces technology similarly, it runs the risk of being seriously antiquated
in the context of the modern world. Forthcoming generations of students will be
even more difficult to persuade to spend laborious amounts of time dealing with
textbook problems over and over again, when they know how to solve such
situations out of school very simply and in a time effective manner. Luke provides an
example of an holistic cross-curriculum activity ‘Planning a hypothetical class trip to
Thailand’ which can be undertaken using the World Wide Web and which would
form the basis for good mathematics instruction. The task would allow consideration
of money (and hence numbers and decimals), percentages (discounts), timetables
and time, spatial appreciation of maps and so on. This can happen now, and many
students may already be exploring areas in a similar way. It can also happen now
with very young children, blurring the boundaries of curriculum and grade levels.
For example, the work of the Cognition and Technology Group at Vanderbilt (CTGV,
1992) which preceded the popular use of the Internet, undertakes a very similar
problem-oriented approach. Such approaches using information technology can also
allow interaction of student groups around the world on common problems and
tasks, an activity that may be seen as enhancing both globalisation and cultural
understanding.

 Technology allows new ways of examining information and new ways of
undertaking holistic numeracy tasks to develop problem-solving ability and domain
knowledge. Technology also has a very direct impact on the way mathematics can
now be taught. Use of computer technology allows a refocus of the emphasis in
mathematics education, away from repetitious practice of the mundane, to
application with understanding and eventually a stronger development of domain
knowledge. Engebretsen (1997) notes that while the use of technology does not
automatically transform teaching from the boring to the exciting, it does have the
potential to do so. Calculators can now allow ‘extensive symbolic manipulation
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capabilities and built-in interactive geometry software’, allowing students to utilise
‘the power of visualization’ (p. 3). Such a role is clearly congruent with a thesis that
mathematics education should help students to ‘envisage the world’. The use of
graphical calculators, spreadsheets and other software, means that students can
engage immediately with the ideas and concepts of a range of mathematical areas,
can see the visual representations and manipulate these to obtain solutions, and can
build immediately a bridge between the nature of the concept and its modeling,
purpose and representational text. How many of the students who have laboriously
studied and resolved quadratic or simultaneous equations have ever understood
their modeling applications? How many students assume that data from real life
situations comes in neat quadratic or linear equation forms? New computer
technologies actually allow students to model real data and explore best-fitting
solutions visually and symbolically. It cannot be rationally argued that repetitious
solution of textbook equations will provide more meaningful mathematical
development for all students.

 Landman (1997) emphasised the role of modeling in mathematics education, noting
that experienced mathematical modellers’ expertise and skills include (p. 11):

• the art of asking probing questions to reveal and clarify the nature of the
problem

• identifying analogies and patterns between well-known models and new
problems

• breaking the problem up into workable pieces

• constructing the mathematical framework

• using the language and tool-box of mathematics to find methods and
solutions

• interpreting and translating the results back into the industry context so
that recommendations can be made and effective technology transfer
carried out.

 This reinforces the framework of the problem-solving and enquiry emphasis for
mathematics education for the future. It clearly indicates that using the most effective
tools to develop these skills is very important. And hence technologies such as
spreadsheets and calculators that can circumvent laborious calculation, (which often
in the past has become the end goal rather than the means to an end), will assist such
a development. Geiger (1997) has noted that graphical calculators, as an example,
allow teachers

 …the opportunity to present concepts in multi-representational form and the
chance to encourage students to make linkages between graphical, numeric and
symbolic forms of mathematical ideas (which) must be embraced (Geiger, 1997,
p. 142).
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 Cumming et al. (1998) noted the multimodal nature of school classrooms, a
multimodality echoed in the workplace as workers move from one form of
communication, text, visual representation to another, often with rapid
interchangeability. Cumming et al. noted that the successful student has learned to
cope with these. The student who cannot cope is often left behind. Teaching students
in ways that help deliberately to address multimodality, and in which connections
between the visual, the abstract and the discourse are considered, will assist all levels
of learning and work performance.

 Technology is not without problems both in terms of gains made in learning and the
practicality of its use. Owston (1997, p. 29) has noted similar technological problems
to Land (1997) regarding the possible failures of technology, problems encountered
by most people as they first made use of the World Wide Web, which, in addition to
problems with traffic and cost

 …can create new kinds of barriers for students. These include computer
hardware that malfunctions, difficulty in setting up software to access an
educational institution or Internet service provider, and encountering constant
busy signal when dialing up from home.

 It has been noted previously that the use of technology in and of itself will not
necessarily mean improved practice or learning outcomes. Owston (1997) cites
Davies (1995) who has stated that for technology to be an effective learning tool in
higher education it must address three questions:

• Does it make learning more accessible?

• Does it promote improved learning?

• Does it accomplish the above while containing, if not reducing, the per unit
costs of education?

 Similar questions must be addressed at all levels of schooling. Maxwell and
Cumming (in preparation) discuss evidence that the use of technology to promote
flexible delivery or delivery of instruction by distance, or even in anticipation of a
distancing between the student and teacher and increased autonomy of the learner,
can be problematic. Evidence to date suggests that students learning in these
environments need more, if different in kind, support than students interacting face-
to-face with the teacher. The loss of human contact and timely advice can lead to
failure.

 The changes in the way technology is used in working with students and enhancing
student learning will have considerable impact on the learning teachers will need to
undertake themselves. In many classrooms, the roles of teacher and students may
well be reversed.
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 Finally, just as technology in schooling will change the roles and responsibilities of
teachers and students, technology in the workplace has led to changing
responsibilities for workers. Not only do workers need additional skills, access to
technology can lead to more self-control and determination. Buckingham (1997,
p. 27) noted that workers in a company with an integrated computerised
management system carried and used calculators. They

 …put their parts-made and time-worked into terminals as they finished each job.
The set rates and rates achieved calculated by the system, could be taken off the
terminals when they next logged on. Workers appeared to carry calculators and
use them, in this case to check their rates, against the computer…

 Where computers were not yet installed, rates were worked out by those with a
supervisory role.

 Cohen and Naylor (1998) have noted a similar outcome when manufacturing
structures become flat and automation leads to reduction in machine operator
assistants. Authoritarian supervisors are also removed and there is a decrease in the
amount of control and coordination undertaken by others on behalf of workers. The
remaining workers need to be much more flexible in completing the requirements of
their job and do have more autonomy.

 Numeracy and employability and the world of work

 Considerable research has explored the idiosyncratic ways in which workers enact
numeracy within their specific contexts, and examined the relationships between
these ways of working and the teaching of school mathematics. Some of the most
well-known work was undertaken by Scribner who systematically explored the
nature of literacy and numeracy at work, compared this with cultural and other
contexts, and through emulation of approaches in semi-experimental frames, sought
to theorise the nature of work cognition. Overall she emphasised a functional
approach to the study of the social practices of the workplace, starting from and
reconfirming her thesis that:

 …people’s cognitive strategies are purposive, flexible, and minimize the effort
needed to accomplish a task… [People] integrated the work of the head and of
the hands in the cognitive processes of purposive activities. Her work reveals a
deep understanding and respect for the complex mental processes for action that
workers carry out, which may or may not be facilitated by the formalisms taught
in school or by those introduced by management to order the workers’ process
(Rogoff, Foreword, p. xv).

 In her various writings Scribner has demonstrated the situatedness of learning and
the extent to which it is culturally sited. In particular, her focus on minimisation of
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effort is instructive in considering how to change mathematics education. In
mathematics education in the past, it is difficult to identify areas where students
have been encouraged to expedite their work by choosing their own strategies. This
is what Scribner showed that workers do all of the time.

 Much of Scribner’s work in factories explored issues of cultural empowerment and
effects of unionism. Buckingham (1997) examined the numeracy skills of 170 workers
in light metal engineering production plants, including process workers and
managers, to explore the roles and needs of workers in restructuring. One of the
outcomes of Buckingham’s work was to question whose numeracy needs were being
met and the real role of education in workplace emancipation. She ‘set out to find out
about the sorts of numeracy education that were helping them to participate in
decision-making in the new environment’ (p. 24) and to ‘learn what they felt about
their scope and capacity for decision-making, with and without mathematics’ (p. 24).
Self-determination varied according to the context of employment, not the skills of
the worker. However, the skills of the worker were found to be more varied
according to the degree of individual control.

 Zevenbergen (1997) explored the ways a pool designer estimated size, volume of soil,
quantities of steel, and maximised strength of steel reinforcement for the concrete
shell according to strict guidelines while minimising the cost and wastage. As noted
earlier, it was apparent that the workers had some strong domain knowledges that
were transferred into the context, such as knowledge of number and units,
trigonometrical principles of angles and verticality, but also clear that the
management of the information was done in site specific ways. The generic skills
developed in the context of ‘pool building’ had to be adapted for each site.
Estimation skills were necessarily strong, and even more interesting. Zevenbergen
records that, ‘when estimating the amount of soil to be removed from the site, the
excavators could “see” the volume of dirt’ (Zevenbergen, 1997, p. 90). Presumably
the excavators could translate this visually into truckloads to minimise cost of
transport. While this is a very specific meaning of the word ‘envisaging the world’, it
demonstrates that as in many areas of expertise, such as with Scribner’s dairy
workers, a mathematical or numeracy task is transferred by experts into a spatial or
visual model.

 [W]hen a large array was not a solid rectangle, but had gaps, the men mentally
squared off the array by visualizing phantom stacks and counting them. They
then multiplied by rectangular dimensions and completed the solution by
subtracting the phantoms from the product (Scribner, 1985b, p. 326).

 This is the way experts ‘chunk’ (in the psychological sense of saving memory
capacity and enabling recall and processing) such information into non-standard and
often visual units. Scribner’s dairy workers never used the notion of ‘a case’ as a unit
for working out volume. Neither the pool workers nor the dairy workers used a
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mathematics equation for calculating volume, recalling previous distinctions
between the numeracy ‘to do’ and the mathematics of school. Zevenbergen’s and
Scribner’s work raise again the issue of situatedness for learning, revisiting the
question of balance between generalisation, abstraction and specificity raised by
Nunes et al. (1993).

 Harris (1991, p. 138) noted that:

 in work… mathematical activity arises from within practical tasks, often from the
spoken instruction of a supervisor and always for an obvious purpose which has
nothing to do with numbers working out well.

 An employee who is not numerate in the workplace is either at risk of losing
employment or costing the employer or business, income. Various studies have
shown the links between numeracy performance, even on standardised and
constrained measures, and employability. Parsons and Bynner (1997) found, on the
basis of a longitudinal National Child Development Study in the UK, that even with
good literacy skills, poor numeracy skills reduced employment and training
opportunities and promotion prospects. In another study tracing a group since 1958,
they found (Bynner &, Parsons 1997) that people without numeracy skills left school
early, frequently without qualifications, and had more difficulties getting and
maintaining full-time employment. Such jobs as they found were usually lower
status, lower pay and with poorer prospects than for those with better skills. A
particular gender effect is that women with poor numeracy skills are often excluded
from clerical and sales work, a major area of occupation for women.

 These overall findings of the relationship between numeracy skills as measured in
these studies, educational experience and work are supported by several other
studies including work by Ekinsmyth and Bynner (1994) following through a later
cohort. The various national and international adult literacy surveys which
document quantitative literacy, a particular aspect of numeracy related to the
manipulation of numbers within text and reading of graphs and tables, similarly
report strong links between performance, extent of schooling and employability.
Rivera-Batiz (1992) noted that low quantitative literacy appeared to be associated
with a lower probability of employment among young African Americans. Jenkins
and Kirsch (1994) noted that the level of identified skill was linked to probability of
employment and level of income. The ABS survey in Australia (ABS, 1997) similarly
found that early school leavers were likely to have lower performance across all age
groups, and difficulties in gaining or maintaining employment. This was still true for
the current generation of 15 to 19 year olds, showing that there is still an important
proportion of students whom schools are failing. Marks and Ainley (1997) also report
correlations between numerate performance and employability over a period of time.
Lamb (1997) reports for Australian youth, that fewer than 50 per cent of male
students with very low numeracy test performance complete school, and fewer than
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60 per cent of girls with similar performance. The relationship is clearer than for poor
reading skills. Interestingly, the results show that

 …weaker numeracy skills for women are a greater impediment to the chances of
entering university than poor literacy skills. The opposite is true of males (Lamb,
1997, p. 11–12).

 However, participation in TAFE was not dependent on very high literacy or
numeracy achievement. Lamb notes that apprenticeships are more often undertaken
by early school leavers and are likely to have higher proportions of youth with
average to below average literacy and numeracy skills. Links between low numeracy
skills, as measured by the test, and employment were strong.

 Young people with weak literacy and numeracy skills are fundamentally
disadvantaged when it comes to getting a job… (experiencing) longer spells of
unemployment (Lamb, 1997, p. 19).

 Poor number skills were the strongest predictor of unemployment for teenage girls,
while boys with very poor number and work skills had more than twice the
probability of being out of work than those with average or above skills. As in the
English studies, poor skills were associated with low status and low paid jobs for
those who were employed.

 These findings of the relationships between poor mathematics performance, length
of schooling and employability are serious. However, rather than attributing
responsibility to the individual for failure, such results may be interpreted in two
other ways. Firstly, the ways in which ‘numeracy’ is assessed in all of these studies
may be questionable. In nearly all cases, the ‘numeracy’ assessments are based on
decontextualised or school-emulating tasks and are demonstrating once again that
these individuals are not successful in the context of school mathematics. The
assessments do not attempt to identify the numeracy skills that these individuals
have achieved. It has been noted earlier that an outcome of present mathematics
education is that it selects ‘out’ students rather than becoming more inclusive, and
many students will have been identified at an early age as failures. If this failure
occurs across another area as well, such as literacy, they are very likely to be early
school leavers. While it may be far-fetched, it is possible that at least previous
mathematics education experience has been responsible for students’ early school
leaving, rather than enhancing their educational opportunities. A change in focus of
the numeracy education curriculum and in pacing issues may address this problem.

 Secondly, employability is dependent on how many jobs are available. It is often
argued, on the basis of the correlation between poor literacy and numeracy skills and
unemployment, that improving literacy and numeracy will improve unemployment.
Correlation, of course, does not imply causation. Levin (1998) notes that the
educational sector has used such arguments in order to drive reform, rather than
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through any ‘compelling evidence on the links between specific educational
standards and economic performance’ (p. 4). In fact, Levin points out that some of
the evidence of the relationship between educational standards and productivity, is
to the contrary,

 …the enormous success of foreign manufacturers in transplanting their
operations to the U.S… when such Japanese firms as Honda, Toyota, and Nissan
established operations in the U.S. using local workers from areas hardly known
for the quality of their education, they found that they could produce
automobiles as efficiently and as high in quality as in Japan (Levin, 1998, p. 7).

 Robinson (1998, p. 144) has similarly noted that

 …once the vast majority of the adult population are functionally literate, which
has been the case in all the advanced industrial countries for many years, any
link between the attainment of literacy and numeracy and economic performance
is very hard to demonstrate.

 Nor does it follow that the aggregate level of employment or unemployment would
be changed if the adult population overall had higher levels of literacy and
numeracy.

 These arguments, however, are related to economic agendas in specific areas.
Arguments can also be made about the social and economic gains of enhanced
general levels of literacy and numeracy for society in a number of ways — decreased
health costs, decreased social welfare dependence and so on.

 Statistics have also shown the rapid increase in self-employed persons in Australia.
Educational institutions such as schools may have to face the reality that not every
student who graduates will end up with a high status job. One of the role of schools,
particularly mathematics education, can be therefore to ensure that every student
who graduates, who does not have severe physical or intellectual impairments that
might prevent employment, has the skills to be self-employed, self-sustaining and
empowered in modern society. For those who are slightly ahead in the queue, it will
be necessary to ensure that numeracy education does prepare students to be workers
in the new technologies, an area where employment can be expected to grow. To
achieve this will need a new approach to numeracy education, one that sets out from
the start to be inclusive of all learners and their needs, even at the cost of
inclusiveness of curriculum content.
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 The numeracy of work: new demands for flexibility,
problem-solving and trainability

 It was noted earlier that when adults talk about mathematics they conceptualise this
in terms of what they did at school and do not relate it to their activities in everyday
life and work. Research has shown that employers and employees can have similar
preconceptions if asked what mathematics or numeracy employees need to
undertake their jobs. Robinson (1998) has shown in a Basic Skills Survey (1994-1996)
of a large number of establishments employing middle and lower level employees,
employers perceived the demand for numeracy skills to be less than for literacy skills
and to be low for all workers. Little information was obtained about the perceived
skills needs of higher managerial or professional workers. Buckingham (1997) found
similar stereotyped views of mathematics in light metal industries in Australia with
workers and managers stating that ‘as things stand at present there is not much need
for more numeracy’ (p. 26), clearly viewing mathematics as a set of basic procedural
skills. Hangovers from the ‘correct way’ philosophy, which is difficult to expunge
from community conceptions of mathematics, were shown in statements made by
workers

 …that they did not use a calculator because they valued ‘the right way’ of doing
arithmetic, as in mental or written calculations. Interviewees’ conceptions of the
‘rightness’ of a particular way of working in school mathematics, appeared to be
another limitation on thinking mathematically at work (Buckingham, 1997, p. 26).

 Harris (1991), reporting on a study of the mathematics at work, is in fact critical of
the methodology of the study that presented lists of mathematics activities which in
themselves were strongly aligned with curriculum notions of mathematics, including
statements such as ‘read or write numbers’, ‘percentages’ and so on. Mathematical
focuses such as spatial relations, modelling or problem solving were not
investigated. However, in follow-up analyses, she found considerable difference
between reported usage and elaborations of behaviour even on such limited data.

 For example, one jobholder when asked about the use of percentage calculations
from the Basic Calculations questionnaire denied that she used them. When
asked how she dealt with irate customers under the Communication Skills
questionnaire, however, she (reported that she) calmed them down by ‘knocking
15% off’ (Harris, 1991, p. 136).

 Harris noted that information about the use of mathematics at work, although not
mentioned in the mathematics-oriented questionnaire, repeatedly arose in the
communication questionnaire and ‘illustrated differences between the origin, usage
and techniques of mathematics at school and at work’, noting that ‘it was clear that
much more mathematical thinking was going on than was being revealed’ (p. 137).
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 Harris’s work also shows that even nearly a decade ago, the focus in the workplace
was on oral communication with reduced writing. Although a range of mathematical
domain knowledge is called upon, problem-solving in specific contexts was very
important. She found that fractions were called upon, which may dismay some
mathematics educators, and that occupations that might be hypothesised as
requiring a large and sophisticated domain knowledge, such as motor mechanics,
were found to have ‘very low use of arithmetic skills and a relatively high use of
problem-solving skills’ (p. 143).

 Strasser, Barr, Evans and Wolf (1991) also explored the nature of mathematical
problems that emerged as ‘real life’ problems from a wide range of occupations.
They identified three main categories of problems (p. 162):

• budgeting in situations of uncertainty where various general decision rules
must be selected and used as more or less appropriate

• allocation of time slots

• stock control and identification of trends in demand or sales from
numerical data.

 Jenkins and Kirsch (1994, p. 43) found similar outcomes noting that

 …besides jobs requiring specific computational and measurement skills in the
building trades, engineering and sales, a wide range of occupations, especially in
offices, depend increasingly on the use of information technology, where some
basic understanding of the logic of IT applications can increase efficiencies.

 Phelps and Hanley-Maxwell (1997) undertook a comprehensive analysis of 50 entry-
level occupations and found that foundational academic skills that were necessary
included:

 … basic computational skills, using reasoning to select an appropriate operation
and applying it to practical problems… Thinking skills include problem-solving
and implementing, visualizing… reasoning to find connections and relationships
necessary for problem solving and continued self-learning (Phelps et al., 1997, p.
201).

 Workplace competencies needed included ‘identifying, organizing, planning and
allocating resources (time, money, human and material/facilities)… computer
technology… securing, applying, and maintaining a variety of technologies’ (p. 201).

 Jones (1998) examined the numeracy training needs of workers in one auto industry
site, finding that workers needed

 …specific skills to be integrated with all other initiatives of a Lean
Manufacturing, Team Based work organisation model, where Quality of Product
was identified alongside Quality of Process… (Jones, 1998, p. 75).



 © Commonwealth of Australia 2000 38

 In the workplace training, emphasis was on use of site specific workplace materials
including leave forms, job sheets, production and quality charts, and health and
safety materials.

 What are the implications of these findings for mathematics education that focuses
on the working out by hand or calculator of simple and compound interest,
following of set algorithms and procedures, completion of textbook tasks and
preparation of histograms from given or collected data? Clearly an implication is that
knowledge of spreadsheets and databases will facilitate most of these activities.
Computer and technological tools can already address the mathematical functions of
these tasks while the role of the individual is to explore the decision parameters and
consequences. Envisaging the future even further, it is possible that the cards we
currently use to obtain cash and credit will come with preprogrammed budget
allocations, worked out in consultation with a financial adviser, in order to maintain
appropriate work and lifestyle budgets. The technology of the future will reduce the
calculation responsibilities of the individual even more, while enhancing the role of
individual responsibility and decision making. The implication of this for future
mathematics education is to assist students to develop the capacity to hold
simultaneously, or in a serial manner, various pieces of information which need to be
integrated and considered. Chong (1995) used a Delphi study to identify perceived
numeracy demands of a technological society and found that respondents classified
their requirements in three categories: social skills, blue-collar skills and white collar
skills. Respondents commonly identified that workers needed the ‘skills necessary
for interacting with vast amounts of information available through electronic media’.

 The flexibility to identify and deal with information efficiently is also important.
Watson, Hall, Breen and Jeganathan (1990) found that sales, service, skilled trades
and technical areas were the jobs that were expected to increase. Computational
numeracy, knowledge of new technology and multiskilling were rated by employers
as the most important skills needed by new employees. Similarly, Wong (1992) found
that ‘numeracy’ was a ‘non-negotiable prerequisite’ along with research and
problem-solving, and practical applications in living skills such as budgeting and
technological usage. Both Watson et al. and Wong demonstrate that employers tend
to nominate non-specific but generic skills for employees, often reminiscent of the
Mayer competencies (Mayer, 1992). Other studies of the numeracy required for
various areas of work, such as the study by Yasukawa (1997) of engineering
numeracy, include indications that engineers need to be numerate to appreciate the
world and critically numerate to appreciate society.

 Landman (1997) has noted the importance of integration of mathematics knowledge
within other contexts of knowledge and application.

 Mathematics is almost never practised in industry as an independent discipline;
it is often an important supporting discipline, the value of which is determined
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by its power to solve problems in improving the primary activities of the
company… Problem formulation, time and cost estimates, project planning and
reporting all play a role, as does the formulation of mathematical models,
mathematical solution techniques, and the interpretation of the mathematical
results (Landman, 1997, p. 17).

 The need for worker flexibility is raised again by Landman and also by Scribner
(1985b) who noted that, ‘skilled practical thinking is marked by flexibility’ and ‘only
novices use[d] algorithmic procedures to solve problems’ (Scribner, 1985b, p. 328).
The generic nature of numeracy work requirements supports research which has
shown the degree to which performance, as discussed previously, becomes highly
site and context specific, but contrasts with current training agendas in Australia and
worldwide, whereby certification and training are taking place within very specific
work contexts. Training packages and qualifications frameworks are being
developed for different industry groups, such as forestry and light manufacturing,
with the expectation that workers trained in one industry site will obtain certification
which has transportability across sites. However, it is already being acknowledged in
the initial implementation of these packages, that site specificity, whereby the range
of materials with which the employee might interact and the range of responsibilities
which they are expected to undertake, impact upon the skills employees are
developing. Overall, the consensus is that workers need a range of skills and
attributes to enter the workforce and the flexibility to learn job and site specific tasks
quickly. This enforces notions of a change in mathematics education from the specific
content knowledge to an emphasis on problem-solving and information integration.
As Nash (1992) found in a survey of employers’ perceptions:

 …the main implication of the survey results for education policy and teaching
methods is that courses need to increase the amount of practical, project type
content, including work experience in industry including basic problem-solving
techniques.

 As Scribner (1985b, p. 329) noted, what is needed is

 …not so much a matter of becoming efficient in running off all-purpose
algorithms as it is in building up a repertoire of solution modes fitted to
properties of specific problems and particular circumstances.

 Levin (1998) had noted that shifting of factories from highly educated areas to less
educated areas had not decreased productivity. He concluded that this was because
of

 …how these firms are organized and managed… Organization and management
place special emphasis on incentives for working productively in teams and for
rewarding quality in production. Training is intensive and continuous,
constantly updating the skills of workers, not only increasing the value of the
worker to the firm, but increasing the attachment of the worker through job-
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specific skills that may not be directly transferable to other firms (Levin, 1998,
p. 8).

 What is perhaps most interesting in the convergence of these findings regarding the
skills that employees demonstrate when in jobs, and the types of skills employers
state as desirable, is that narrow job training in terms of perceived job skills, and the
mathematics education that might be developed to meet these, do not appear
desirable goals. This may have implications for current vocational education and
competency-based education and should be considered carefully in the formation of
a new numeracy policy and education strategy. The educational rationale for
schooling to increase standards to improve the economy lies not in supplying skilled
workers, but in providing people with sufficient skills and adaptability who can be
trained to learn what is specific to a site, quickly on the job. Companies will achieve
economies if they do not need to undertake remedial work but if they can
immediately update skills and make them site specific. Companies will not want to
redress basic computational skills and procedures, graph reading ability, ability to
access and use information from a range of sources, or, possibly, using spreadsheets
and graph production.

 Overall improvement to the economy through improved standards for all school
leavers could ensue through the empowerment of the life choices of the individual,
as noted previously — the ability to identify and undertake self-employment, for
example in the growing service industries, to maintain undemanding, healthy
lifestyles, and to participate in lifelong learning and education. It is interesting to
reflect that in the middle of such a concerted call for flexibility, much traditional
schooling, particularly mathematics education, seems to actively discourage
diversity and flexibility. With our Platonic view of formal knowledge and systems of
assessment that divorce action from meaning, the school sector suffers from ‘funnel’
vision, taking students who demonstrate diversity of experience and knowledge,
making them pass through a narrowly conceived curriculum and assessment regime,
but then expecting students to be able to diversify their skills and apply school
knowledge widely once again when they are through.

 Implications for teacher education and inservice of teachers,
implementing change

 The previous discussion has highlighted the nature of our technological society, the
world of work with its visual and oral framework, and the ways in which numeracy
education needs not only to prepare for such a society, but to also be inclusive of it.
Teachers are integral to the process of preparing students to be active participants in
all aspects of the technological society. In order to do this, teachers must themselves
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embrace this society. Clearly, some of the transitions that this paper has indicated are
necessary for the future, demonstrate that change, in some cases dramatic change,
will be required for numeracy education for the future. Such change is, of course,
dependent on the responsiveness of teacher education institutions to prepare
graduates for the future, as well as on the responsiveness of current teachers to
change. As a national report on issues in science and technology education states
(Brennan (Chair), 1993), a major need may be to enhance ‘the experiential base of
teachers so that they are able to provide students with a greater appreciation of the
application of the material being taught’ (Brennan, 1993, p. 6).

 In considering the future educational needs of youth with disabilities Phelps, Allen
and Hanley-Maxwell (1997) also noted the impact of changing agenda for teacher
education and professional development:

 …all educators… working in secondary schools must develop a critical
understanding of the new workplace skills required of students… Both future
and practicing teachers need to be educated about continuing assessment of
employment requirements (Phelps & Hanley-Maxwell, 1997, p. 221).

 Cumming et al. (1998) realised that their suggestions for changed focus of curriculum
and closer integration of in-school and out-of-school activities, would also place
demands on teacher education and professional development. One specific
recommendation, as in the previous work, was to suggest that all teachers should be
able to participate in non-school work environments in order to have more effective
knowledge of the demands, in this case numeracy demands, of such environments
and better ways of linking with school learning.

 It will be extremely important for the future of numeracy education to have state
government and sectoral initiatives to provide inservice professional development
for teachers. This development needs to address all of the aspects of the discussion so
far. Equity and assessment issues are equally important as familiarity with
technology. Teacher education programs need to address the training of mathematics
teachers at primary and secondary level, and the training of all teachers to have
responsibility for numeracy. Recommendations regarding the teaching of literacy,
which may be paralleled in numeracy, have been made in Cumming et al. (1998).
Changing either teachers’ beliefs and practices or teacher education programs in
such fundamental areas is not easy. For example, the Christie Report (1991)
recommended needed changes to literacy education in pre-service teacher education
that may still not be being met by most institutions.

 The difficulty of implementing change is recognised by the focus of much research
on how to implement change (see, for example, Fullan, 1991, 1993). Changed agendas
and policy for numeracy or mathematics education will not automatically lead to
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successful change in teaching policy. Knapp (1997) discussed issues regarding
systemic reforms and the mathematics and science classroom, raising core concerns.

 The content of (the teachers’) professional development opportunities focused on
mathematics for all students but failed to delve deeply into relevant issues of
culture, language, and ethnicity (Knapp, 1997, p. 243).

 Knapp asks the basic question:

 What do policies and policymakers do to instruct actors throughout the system
regarding the meaning of the policy and how to put it into practice? (Knapp,
1997, p. 253).

 Knapp (1997) raises the concept of social capital as it encapsulates notions of ‘social
relations and structures that seem to affect the capabilities for individual and
collective action’ (p. 254), in order

 …to consider how societal relations and structures might determine, for example,
what parents and others know of mathematics… and how this social capital
might influence the prospects for reforms within classrooms (Knapp, 1997,
p. 254).

 Hence Knapp improves on the notion of inclusivity of society to not only bring the
outside in and encompass cultural diversity, but also to use that society in itself as a
process for change.

 A further area where change issues will need to be addressed is the relationship
between school mathematics and higher education studies. In recent times, this
relationship has appeared to suffer as universities are unclear about their changing
expectations from school graduates to meet the needs of newly-structured courses of
study. They still tend to reify traditional mathematical content knowledge as the
essential learnings. This debate or discussion will need to be much more substantial
from both sides.

 Such issues and questions will have to be addressed very seriously in the quest for a
new direction in mathematics education.

 Conclusion

 In the Abstract it is noted that the focus of this paper was provided through the title
Our changing technological society: Demands and links between numeracy performance and
life outcomes for employment, education and training, with life outcomes for personal
contexts also considered. The readings that inform the paper have encompassed
several dimensions. Firstly, the emphasis on technological society drew attention to
readings which highlighted the nature of our society but also the need for these
technologies to be an integral part of education. One author (Landman, 1997) in fact



 © Commonwealth of Australia 2000 43

refers to the mathematical sciences as a part of the new technologies, showing that
the linkages between mathematics education and society should be very strong.

 The term ‘demands’ of our technological society also led to two major conclusions.
Firstly, the nature of the demands of working numerately and operating effectively
in personal life showed once again that flexibility, working with technology such as
visual display screens, memorisation and classificatory skills, and problem-solving
strategies, were key outcomes of education. However, the readings also showed that
society was demanding to be included as a key component of education, not
marginalised and distanced from the role and functions of education. Education for a
technological society is education that is inclusive of this society, a society that
expects to be involved, a society that is prepared to state publicly and clearly that
current curriculum

 … is essentially irrelevant — too formalised, too sterilised, too disconnected from
the lives people live (Brennan 1993, p. 29).

 Secondly, examination of links with work and personal life has shown that
mathematics education to date has tended to create gaps between the mathematics
learned at school and the numeracy and mathematical demands of the workplace
and personal contexts of being. These gaps have served to alienate many learners
from mathematics, from seeing the utility of mathematics in various contexts, and in
many cases from recognising that what they do is in fact mathematical. The
assessment approaches still practised in much mathematics education exacerbate this
alienation and decontextualisation. The new approaches to assessment (Gipps, 1994)
must be more rigorously pursued. In addition, much of the separation of
mathematics from work and life contexts has served to perpetuate cultural biases
and to define intelligent performance in ways that are peculiar to education. Just as
Scribner (1975, p. 81) notes on the cultural comparative research of Jensen, ‘that the
evidence offered by Jensen from this set of experiments to establish the inherent
stupidity of millions of children must be considered totally inadequate by any
scientific standards’, so mathematics educators must question to what degree we
have allowed children and others to demonstrate the mathematics they possess and
can use, rather than to categorise students as poor mathematicians and failures in
education and our Platonic society.

 If we are willing to accept all of these challenges, then we are ready to envisage the
future.
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