
DIGITISING PICTURES
The Square Kilometre Array is going to collect mind-boggling amounts of information.
Information needs to be stored and displayed accurately to be truly useful.
One of the most amazing things that the SKA will have to deal with is the sheer
amount of information it will generate. Unlike optical telescopes, radio telescopes
don’t actually record images. They record the strength of signals within a given
stretch of the electromagnetic spectrum. The strength of that signal is converted to a
string of numbers. That string is what gets stored, and used to make pictures.
This system is also how a digital camera works- though digital cameras detect visible
light instead of radio waves.
This activity is going to explore the idea of representing pictures (in this case text
first) as pixels- small squares that make up a picture. The colour and position of that
pixel is determined by the string of numbers.
To keep it relatively simple, in this activity, we will use 1 to mean “fill the square” (you
can either fill it completely, or mark it) and 0 to mean “leave it empty”. With that
rule established, we can read strings, or create them.

What to do
Creating strings of data
In this activity we are going to explore making our own pictures. As with the Reading
Strings activity, we can start with text- creating your own font. After doing this, you
may appreciate how labour intensive making fonts can be. Fortunately digital fonts
aren’t usually made this way any more. Instead, people use formulae to describe the
shape of the letter.

What you need:

• Square paper

• Pencil

• Ruler

1. Start by setting the boundary of the letter you’re going to
make. If you make the boundary a prime number, it
makes decoding it easier. The larger the grid, the
smoother your letter will look, but the more information it
will take. In this example, the sides are 11×13 = 143
pixels to make one letter!

2. Choose a letter, and draw it on your grid. In this example,
choosing the lower case ‘a’ shows that even 143 pixels
isn’t many when you’re trying to make curves smooth…

3. Starting at the top left corner, start recording what
information is there. Use 1 for “filled” and 0 for
“empty”. In this example, the string will start “0”.
Once you’ve filled in the state of a pixel, look at the
pixel immediately to its right. Record that pixel’s
state and keep going.

4. When you reach the end of a row, continue at the
leftmost column in the next row down. Accordingly,
this string is going to start 00000000000001111…

Adding Colour
Adding more information to your picture means adding more information to the string.

In this example, we’ve got 4 possible states for a pixel to be:

• White (which we can represent by 0);

• Black (represented by 1);

• Green (represented by 2);

• Yellow (represented by 3).
Doing the same process detailed above, we can now have a
string that starts 0003333300000331113300033111….
The more colours that you use, the more information needs to
go into the string. With this manual system, we can happily use
the numbers 0-9 to represent ten different colours.

If we want to represent more than ten colours, we either need to use:

• preceding zeros- for example, 00, 01, 02, 03 which will double the length of
the string;

• letters to represent colours. This is great, but only gets us to 36 colours.

A “CompuServe Graphic Interchange Format” file or .gif file uses a maximum of
256 colours for each picture. Accordingly, each pixel is labelled with a number
from 0-255 (in binary, from 00000000 to 011111111). That’s why .gif files are so
small, but also means they have as good picture quality as other files types.

Compressing the information
Having 133 bits of information describing such a small picture is a good start, but
there are more efficient ways of storing this data. A simple way of doing this is
instead of using one number per pixel, you can use pairs of numbers to describe how
the picture is built up.

Starting at the top left, and moving one pixel at a time left to
right, you can see that you get large chunks of repeating
numbers.
Expanding on this idea, you could use the first number in the
pair of numbers to describe the colour, and the second number
to describe how long that number repeats.
In this example, the first pair of numbers would be 03, meaning
“It’s colour 0 for the next 3 squares”.
The string for this picture would be 0335053213320332153202
32153202321532023313330337053221320821090121062202

210222022301210123032702, which is only 96 ‘bits’ of information…

This gives an excellent opportunity to look at ratios, by considering the unfortunate
phrase data compression ratios.
We have a string of 96 numbers represent an uncompressed string of 143 numbers.
As a ratio, that works out to be 96:143, which doesn’t present well. Alternative ways
of representing this ratio, however, show that we’ve data compression of 96 ÷ 143 ≈
0.671, or roughly 67%. You can also consider the space saving, by using:

1 – data compression.

There are pictures that will actually increase the size of the string if you use the
compression technique listed above. For example, for the first 8 squares of a
chessboard pattern, the ‘raw’ data from the first step would give a string length of 8:
01010101. Using this compression technique would give a string length of 16:
0111011101110111.

Investigation
Perhaps you can devise a better compression system? It’s one of the goals that
mathematicians and computer scientists strive for.
If there are only 4 possible colours for a pixel, how many combinations are there of
two side by side pixels?
{00,01,02,03,10,11,12,13,14,20,21,22,23,30,31,32,33} = 4×4 = 16.
How could you represent those 16 different combinations?

