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Proving Pythagoras’ theorem 
http://topdrawer.aamt.edu.au/Geometric-reasoning/Good-teaching/Writing-a-
proof/Proving-Pythagoras-theorem/Dissected-proof 
 
 
In any right angled triangle, the square on the hypotenuse is equal to the sum of the 
squares on the other two sides. 
 
 
 
Aim: To prove c2 = a2 + b2  
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b
y

 In ΔABC and ΔADC 

(matching sides of similar triangles) (both 90° given) 

∠ACB = ∠ADC ∴ c2 = a2 + b2 

∴ ΔABC ||| ΔACD is common 

∠A ∴ ΔABC ||| ΔCBD 

 
∴

AB
AC

=
BC
CD

=
AC
AD

 ∴ a2 = cx 

(AAA) 
 
∴

 c
b
=

b
y

 

(both 90° given) ∴ b2 = cy 

∠B (AAA) 

Now a2 + b2 = cx + cy ∠ACB = ∠BDC 

= c(c) In ΔABC and ΔBDC 

(matching sides of similar triangles) = c(x + y) 

is common = c2 
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